Distributed Algorithms for Computer Networks

Chapter 5

Spanning Tree Construction

Dr.Ahmed Awad
Dr. Amjad Hawash

Introduction

- Spanning Tree: The maximal set of edges of a graph that contains no cycles.
\rightarrow The minimal set of edges that connect all vertices.
- Why spanning trees in computer networks?
- They provide a subtree with possibly less communication links, resulting in lowered communication costs.
- Providing a parent/child relationship among the nodes of the network eases the task of communication since the source and the destination of the communication is known beforehand.

The Flooding Algorithm

- Broadcast: Sending a message to all nodes in a computer network.
- Flooding: Forward any incoming message to all neighbors except the neighbor that has sent the message.
- If the same message arrives again, it should be discarded.
- The node that initiates the message to be broadcasted is called the root.

The Flooding Algorithm (2)

```
Algorithm 4.1 Flood
    1: int \(i, j\)
    boolean visited \(\leftarrow\) false
    message types \(m s g\)
    if \(i=\) root then
    send \(m s g\) to \(\Gamma(i)\)
    visited \(\leftarrow\) true
    end if
receive flood \((j)\)
    if visited \(=\) false then
        send \(m s g\) to \(\Gamma(i) \backslash\{j\}\)
        visited \(\leftarrow\) true
    else
                                \(\triangleright m s g\) received before
            discard msg
    end if
```

\triangleright root initiates flooding
\triangleright flood may be received many times
$\triangleright m s g$ received first time
$\triangleright m s g$ received before

The Flooding Algorithm : Complexity Analysis

- Message Complexity:
- Each edge connects two nodes.
- Each edge is used to deliver a message at least once and at most twice when two nodes send messages concurrently.
- Total number of messages $=2 m$ where m represents the number of edges in the graph.
- \rightarrow Message complexity: $\mathbf{O (2 m)}=\boldsymbol{O}(\mathbf{m})$
- Time Complexity:
- The longest time for the broadcast message to reach any node in the graph is the distance between the two farthest nodes of the graph.
- \rightarrow Time complexity: ${ }^{\boldsymbol{Q}}(\boldsymbol{d}:$ The diameter of the graph.

Flooding-Based Asynchronous Spanning Tree Construction Algorithm (Flood_ST)

- Objective: Build spanning tree originating from the initiator root for broadcasting. This tree can be used for any further broadcast messages.
- Assumption: Each node in the tree except the leaf nodes should know the identifiers of its children and all nodes except the root should know their parents.
- Any node that wants to build a broadcast tree initiates the algorithm and becomes the root of the spanning tree to be formed.

Flood_ST

- Types of messages: Probe.
- Ack.
- Reject
- Any node that wants to build a spanning tree starts the algorithm by sending probe message to its neighbors.
- When a node receives a probe message:
- it sends a positive acknowledgement to the source node (which becomes a parent) in case it doesn't have a parent.
- It transfers the probe message to all of its neighbors except the parent.
- If a node has a parent, it sends a reject message to source node of the probe message.

Flood_ST Algorithm

```
Algorithm 4.2 Flood_ST
    int parent \(\leftarrow \perp\)
    set of int childs \(\leftarrow \varnothing\), others \(\leftarrow \varnothing\)
    message types probe, ack, reject
    if \(i=\) root then
        send probe to \(\Gamma(i)\)
        parent \(\leftarrow i\)
    end if
    while \((\) childs \(\cup\) others \() \neq(\Gamma(i) \backslash\{\) parent \(\})\) do
        receive \(m s g(j)\)
        case \(m s g(j)\).type of
            probe: \(\quad\) if parent \(=\perp\) then \(\quad \triangleright\) probe received first time
                        parent \(\leftarrow j\)
                                send \(a c k\) to \(j\)
                                send probe to \(\Gamma(i) \backslash\{j\}\)
                                else \(\quad \triangleright\) probe received before
                    send reject to \(j\)
            ack: \(\quad\) childs \(\leftarrow\) childs \(\cup\{j\}\)
            reject: others \(\leftarrow\) others \(\cup\{j\} \quad \triangleright\) include \(j\) in unrelated neighbors
    end while
```


Flood_ST- Example

Message complexity=2m+2=20
Time complexity=3
\rightarrow Shortest path is not always followed due to communication link speeds.

Flood_ST: Complexity Analysis

- Message Complexity:
- Each edge will be traversed at least twice with probe and ack or probe and reject messages.
- Each edge will be traversed at most 4 times in the case of two nodes attempting to send each other probe message concurrently.
- In total 4 m messages will be sent.
\rightarrow Message complexity $=\mathbf{O}(\mathbf{4 m})=\mathbf{O}(\mathrm{m})$

Flood_ST: Complexity Analysis

- Time Complexity:
- The message maybe transferred over the fast communication links of the longest path instead of the shortest paths with slow links.
- \rightarrow Time Complexity $=O(n)$
n : The number of vertices in the graph.

Breadth First Search (BFS)

- Graph Traversal: Visiting all vertices of a graph in some predefined order.
- It maybe required to find the shortest distances of vertices from a source vertex in terms of the number of links (hops) to that source.
- \rightarrow Approach: Breadth-First-Search (BFS) tree.

Definition 5.1 (Breadth-First-Search Tree) A breadth-first-search tree T of a graph G is a spanning tree of G such that for every node of G, the tree path is a minimumhop path to the root.

Breadth First Search (BFS)

How is this accomplished? Simply replace the stack with a queue! Rules: (1) Maintain an enqueued array. (2) Visit node when dequeued.

Walk-Through

Nodes visited:

Enqueued Array

Enqueue D. Notice, D not yet visited.

Walk-Through

Enqueued

Nodes visited: D

Dequeue D. Visit D. Enqueue unenqueued nodes adjacent to D.

Enqueued

Nodes visited: D, C

Array

Dequeue C. Visit C. Enqueue unenqueued nodes adjacent to C.

Walk-Through

Enqueued

Nodes visited: D, C, E
Dequeue E. Visit E. Enqueue unenqueued nodes
adjacent to E .
Nodes visited: D, C, E, F
Enqueued Array

A	
B	
C	V
D	V
E	V
F	V
G	V
H	

$\mathrm{Q} \rightarrow \mathbf{G}$

Dequeue F. Visit F. Enqueue unenqueued nodes adjacent to F.

Walk-Through
Enqueued Array

Nodes visited: D, C, E, F, G

Dequeue G. Visit G. Enqueue unenqueued nodes adjacent to G.

Walk-Through
Enqueued

Nodes visited: D, C, E, F, G, H

A	\checkmark	
B	\checkmark	$\mathrm{Q} \rightarrow \mathrm{A} \rightarrow \mathrm{B}$
C	\checkmark	
D	\checkmark	
E	\checkmark	
F	\checkmark	
G	\checkmark	
H	\checkmark	

Dequeue H. Visit H. Enqueue unenqueued nodes adjacent to \mathbf{H}.

Walk-Through
Enqueued Array

A	\checkmark
B	\checkmark
C	\checkmark
D	\checkmark
E	\checkmark
F	\checkmark
G	\checkmark
H	\checkmark

Dequeue A. Visit A. Enqueue unenqueued nodes adjacent to A .

Walk-Through

Enqueued Array

A	V
B	V
C	V empty
D	V
E	V
F	V
G	
H	

Nodes visited: D, C, E, F, G, H, A, B

Dequeue B. Visit B. Enqueue unenqueued nodes adjacent to B.

Walk-Through
Enqueued Array

A	\checkmark
B	\checkmark
C	\checkmark
D	Q empty
E	\checkmark
F	\checkmark
G	\checkmark
H	\checkmark

Nodes visited: D, C, E, F, G, H, A, B

Q empty. Algorithm done.

Depth First Search (DFS)

- Objective: Find all of the vertices reachable from a source vertex in the graph.
- It visits all possible vertices as far as it can reach and when all vertices are visited, it returns to the parent node.

Definition 5.2 (Depth-First-Search Tree) A frond edge is an edge that does not belong to a spanning tree. For a rooted spanning tree T of a graph G, let us denote by $S(u)$ all the nodes in the subtree of u, and $P(u)$ denote all the vertices that exist between u and the root. A depth-first-search tree of a graph G is a spanning tree T of G such that for every frond edge $\{u, v\}, v \in S(u) \vee v \in P(u)$ [5].

- Applications:
- Finding strongly connected components of a directed graph.
- Cycles detection !!

Depth First Search (DFS)

Walk-Through

Task: Conduct a depth-first search of the graph starting with node D

Walk-Through

The order nodes are visited:
D

Walk-Through

The order nodes are visited:
D

Visited
Array

A	
B	
C	
D	\checkmark
E	
F	
G	
H	

Consider nodes adjacent to D, decide to visit C first (Rule: visit adjacent nodes in alphabetical order)

The order nodes are visited:
D, C

Array

A	
B	
C	$\sqrt{ }$
D	$\sqrt{ }$
E	
F	
G	
H	

Visit C

Walk-Through

The order nodes are visited:
D, C

Visited
Array

A	
B	
C	\checkmark
D	\checkmark
E	
F	
G	
H	

Back to D-C has been visited, decide to visit E next

Walk-Through

The order nodes are visited:
D, C, E

Visited Array

A	
B	
C	$\sqrt{ }$
D	$\sqrt{ }$
E	$\sqrt{ }$
F	
G	
H	

Back to D-C has been visited, decide to visit E next

Walk-Through

The order nodes are visited:
D, C, E

Only G is adjacent to E

Walk-Through

The order nodes are visited:
D, C, E, G

Visit G

Walk-Through

The order nodes are visited:
D, C, E, G

Visited
Array

A	
B	
C	$\sqrt{ }$
D	$\sqrt{ }$
E	\mathfrak{V}
F	
G	\mathfrak{V}
H	

G
E
D
Nodes D and H are adjacent to
G. D has already been visited. Decide to visit H.

Walk-Through

The order nodes are visited:
D, C, E, G, H

Visit H

Walk-Through

The order nodes are visited:
D, C, E, G, H

Visited Array

A	
B	
C	\mathfrak{V}
D	$\sqrt{ }$
E	\mathfrak{V}
F	
G	$\sqrt{ }$
H	\mathfrak{V}

H
G
E
D
Nodes A and B are adjacent to F. Decide to visit A next.

Walk-Through

The order nodes are visited:
D, C, E, G, H, A

Visited
Array

Only Node B is adjacent to A. Decide to visit B next.

Walk-Through

The order nodes are visited:
D, C, E, G, H, A, B

Visited Array

A	\checkmark
B	$\sqrt{ }$
C	$\sqrt{ }$
D	$\sqrt{ }$
E	$\sqrt{ }$
F	
G	$\sqrt{ }$
H	\checkmark

Visit B

Walk-Through

The order nodes are visited:
D, C, E, G, H, A, B

Visited
Array

A	\checkmark
B	\checkmark
C	\checkmark
D	\checkmark
E	\checkmark
F	
G	\checkmark
H	\checkmark

A
H
G
E
D
No unvisited nodes adjacent to B. Backtrack (pop the stack).

Walk-Through

The order nodes are visited:
D, C, E, G, H, A, B

Visited
Array

A	\checkmark
B	\checkmark
C	$\sqrt{ }$
D	\checkmark
E	\checkmark
F	
G	\checkmark
H	\checkmark

H
 G
 E
 D

No unvisited nodes adjacent to A. Backtrack (pop the stack).

Walk-Through

The order nodes are visited:
D, C, E, G, H, A, B

Visited
Array

A	\checkmark
B	$\sqrt{ }$
C	\checkmark
D	$\sqrt{ }$
E	\checkmark
F	
G	\checkmark
H	\checkmark

G
 E
 D

No unvisited nodes adjacent to H. Backtrack (pop the stack).

Walk-Through

The order nodes are visited:
D, C, E, G, H, A, B

Visited
Array

A	\checkmark
B	\checkmark
C	\checkmark
D	\checkmark
E	\checkmark
F	
G	\checkmark
H	\checkmark

E
D
No unvisited nodes adjacent to
G. Backtrack (pop the stack).

Walk-Through

The order nodes are visited:
D, C, E, G, H, A, B

Visited
Array

A	\checkmark
B	\checkmark
C	\checkmark
D	\checkmark
E	\checkmark
F	
G	\checkmark
H	\checkmark

D
No unvisited nodes adjacent to E. Backtrack (pop the stack).

Walk-Through

The order nodes are visited:
D, C, E, G, H, A, B

Visited
Array

A	\checkmark
B	\checkmark
C	\checkmark
D	\checkmark
E	\checkmark
F	
G	\checkmark
H	\checkmark

D
F is unvisited and is adjacent to D. Decide to visit F next.

Walk-Through

The order nodes are visited:
D, C, E, G, H, A, B, F

Visit F

Walk-Through

The order nodes are visited:
D, C, E, G, H, A, B, F

No unvisited nodes adjacent to F. Backtrack.

Walk-Through

The order nodes are visited:
D, C, E, G, H, A, B, F

Visited
Array

A	\checkmark
B	$\sqrt{ }$
C	\checkmark
D	\checkmark
E	\checkmark
F	\checkmark
G	\checkmark
H	\checkmark

No unvisited nodes adjacent to D. Backtrack.

Walk-Through

The order nodes are visited:
D, C, E, G, H, A, B, F

Stack is empty. Depth-first traversal is done.

Distributed Breadth-First-Search Algorithms

- Synchronous BFS: Synchronous algorithm working in rounds to construct the BFS tree.
- Asynchronous BFS Construction: Asynchronous algorithm to construct the BFS tree.

Synchronous BFS Construction Algorithm (Synch_BFS)

- The synchronous distributed version of Dijkstra's algorithm for single-source shortest path problem.
- A single initiator algorithm.
- In each synchronous round, a partial BFS tree is formed.
- The already formed branches of the tree are used to carry synchronization messages and the leaves search for new nodes to be added to the tree.
- The depth of the tree is incremented in each round until all the nodes are covered.

Synch_BFS Algorithm Features

- Full termination detection is provided so that all other nodes know when the BFS is constructed.
- Synchronization is performed using special control messages
\rightarrow Eliminates the need of other synchronization techniques such as specific synchronizer node.

Synch_BFS Algorithm Message Types

- Round: Sent by the root at the beginning of each round and transferred by all the nodes of the partial BFS tree to their children.
- Probe: Sent by the leaves of the partial BFS tree to the unsearched neighbors (that have not yet been members of the tree).
- Ack/Reject: Sent by the searched node to accept/reject being a child of the sending leaf node.
- Upcast: Sent first by the leaf nodes of the partial BFS tree and then by the intermediate nodes to their parents to signal the end of neighbor search and the end of the round.
- Finish: Sent by the leaf nodes to their parents to signal that their part is done as they either have no neighbors other than the parent or they do not have any children.
- Terminate: Broadcasted by the root to all nodes to signal that the construction of the BFS tree is

Synch_BFS Algorithm Flow

\rightarrow The root starts the algorithm by sending the first round message to its neighbors.
\rightarrow The neighbors respond with ack message.
\rightarrow The round message is transferred over the partial BFS tree to the leaf nodes.
\rightarrow The leaf nodes search nodes for the next level the BFS tree by sending probe messages.
\rightarrow Each leaf node that has received ack or reject message from all of its neighbors except the parent returns upcast message to its parent, which convergecasts the upcast message to its parent.
\rightarrow When all upcast messages from the neighbors of the root are received, root starts the next round by issuing the next round message.

Synch_BFS Algorithm Flow- Example

Synch_BFS Algorithm Termination

- The root does not know beforehand the diameter of the graph.
- When all the neighbors of a node i except its parent have responded by a reject message or when a leaf node (in the constructed BFS tree) does not have any neighbors other than its parent, the part of node i is over.
- When a node reaches this situation, it sends a finish message to its parent which converecasts it to the root.
- When the root receives finish message from all of its children, it broadcasts a terminate message over the network to inform every node that the process is over.

Algorithm 5.1 Synch_BFS
: int parent $\leftarrow \perp, k \leftarrow 1, i, j$
2: set of int childs, others, phased, finished $\leftarrow \varnothing$
3: message types round, probe, ack, reject, upcast
4: boolean leaf_flag \leftarrow false
5:
6: if $i=$ root then
7: \quad send probe (k) to $\Gamma(i)$
8: \quad while true do
9: \quad receive $m s g(j)$
10: case msg.type of
11:
12:
13:
14:
15:
16:
17:
18:
19:
else

> while true do

$$
\text { round_over } \leftarrow \text { false }
$$

$$
\text { while } \neg \text { round_over do }
$$ receive $m s g(j)$ case msg.type of

$\operatorname{round}(k): \quad$ if state $=$ interm then $\quad \triangleright$ intermediate node
send round (k) to childs
else $\quad \triangleright$ leaf node
send $\operatorname{probe}(k)$ to $\Gamma(i) \backslash\{$ parent $\}$
round_recvd \leftarrow true
probe $(k): \quad$ if parent $=\perp$ then \quad non-member node
parent $\leftarrow j$; state \leftarrow new_leaf
send $\operatorname{ack}(k)$ to j
else $\quad \triangleright$ a member node
send reject (k) to j
ack $(k): \quad$ childs \leftarrow childs $\cup\{j\}$
if state \neq interm then interm_flag \leftarrow true
reject $(k): \quad$ others \leftarrow others $\cup\{j\}$
if others $=\Gamma(i) \backslash\{$ parent $\}$ then $\quad \triangleright$ a leaf node finishes
send finish to parent
upcast $(k): \quad$ phased \leftarrow phased $\cup\{j\}$
finish: \quad finished \leftarrow finished $\cup\{j\}$
if $($ finished $=$ childs $) \wedge($ state $=$ interm $)$ then
send finish to parent
terminate: \quad if childs $\neq 0$ then
send terminate to childs
exit
\triangleright all nodes terminate

Synch_BFS Algorithm Complexity Analysis

- Lemma: Synch BFS algorithm correctly constructs a BFS

Proof: By mathematical induction, let k denote the step at which the BFS tree is being constructed.
(1) At step $\mathrm{k}=0$, no tree is constructed.
(2) Assume that at step k, T_{k} tree rooted at r is constructed.
(3) at step $k+1$, only the leaves of the tree will be active in sending the probe messages to their neighbors that are one hop away.
\rightarrow Any added nodes will be $k+1$ hops away from r, forming $\mathrm{T}^{-}{ }_{k}$

Synch_BFS Algorithm Complexity Analysis

- Time Complexity:
- Broadcasting the round message to current T_{k} BFS tree (whose depth is k) is performed in k units.
- Convergecast of the upcast messages is performed in k units as well.
- Additional time is required for probe and ack/reject messages.
\rightarrow For each step, $2 \mathrm{k}+2$ time is required.
- The depth of the tree will be d in total (d represents the diameter of the graph).
- Time Complexity $==2 \sum_{k=1}^{d}(k+1)=(d+1)(d+2) / 2=O\left(d^{2}\right)$.
$\rightarrow 0\left(\mathrm{~d}^{2}\right)$
d: The diameter of the graph.

Synch_BFS Algorithm Complexity Analysis

- Message Complexity:
- In round p, if the tree formed has k nodes, there will be $k-1$ round messages and $k-1$ upcast messages.
- \rightarrow Total number of synchronization messages for a round is $\mathbf{O}(\mathbf{n}), \mathrm{n}$: the number of vertices in the graph.
\rightarrow The number of synchronization messages in all rounds will be $\mathbf{O}(\mathbf{n d})$
- In each round, new edges of the BFS tree will be determined by probe and ack/reject messages.
\rightarrow The total number of discovery messages $=2 \mathrm{~m}$
m : The number of edg $\mathcal{O (n d) + O (m) = O (n d + m) ~ (1) ~}$
\rightarrow Message Complexity=

