
Distributed Algorithms for Computer
Networks

 Chapter 5

Spanning Tree Construction

Dr.Ahmed Awad

Dr. Amjad Hawash

2

Introduction

 Spanning Tree: The maximal set of edges of a
graph that contains no cycles.

 The minimal set of edges that connect all
vertices.

 Why spanning trees in computer networks?
 They provide a subtree with possibly less

communication links, resulting in lowered
communication costs.

 Providing a parent/child relationship among the
nodes of the network eases the task of
communication since the source and the
destination of the communication is known
beforehand.

3

The Flooding Algorithm

 Broadcast: Sending a message to all nodes in a
computer network.

 Flooding: Forward any incoming message to all
neighbors except the neighbor that has sent the
message.

 If the same message arrives again, it should be
discarded.

 The node that initiates the message to be
broadcasted is called the root.

4

The Flooding Algorithm (2)

5

The Flooding Algorithm : Complexity Analysis

 Message Complexity:
 Each edge connects two nodes.
 Each edge is used to deliver a message at

least once and at most twice when two nodes
send messages concurrently.

 Total number of messages =2m where m
represents the number of edges in the graph.

  Message complexity: O(2m)=O(m)

 Time Complexity:
 The longest time for the broadcast message

to reach any node in the graph is the
distance between the two farthest nodes of
the graph.

  Time complexity: d: The diameter of the
graph.

6

Flooding-Based Asynchronous Spanning Tree
Construction Algorithm (Flood_ST)

 Objective: Build spanning tree originating from
the initiator root for broadcasting. This tree can
be used for any further broadcast messages.

 Assumption: Each node in the tree except the
leaf nodes should know the identifiers of its
children and all nodes except the root should
know their parents.

 Any node that wants to build a broadcast tree
initiates the algorithm and becomes the root of
the spanning tree to be formed.

7

Flood_ST

 Types of messages:
 Probe.
 Ack.
 Reject

 Any node that wants to build a spanning tree
starts the algorithm by sending probe message
to its neighbors.

 When a node receives a probe message:
 it sends a positive acknowledgement to the

source node (which becomes a parent) in
case it doesn’t have a parent.

 It transfers the probe message to all of its
neighbors except the parent.

 If a node has a parent, it sends a reject
message to source node of the probe
message.

8

Flood_ST Algorithm

9

Flood_ST- Example

Message complexity= 2m+2=20
Time complexity=3

 Shortest path is not always followed due to
communication link speeds.

10

Flood_ST: Complexity Analysis

 Message Complexity:
 Each edge will be traversed at least twice

with probe and ack or probe and reject
messages.

 Each edge will be traversed at most 4 times
in the case of two nodes attempting to send
each other probe message concurrently.

 In total 4m messages will be sent.

 Message complexity = O(4m)=O(m)

11

Flood_ST: Complexity Analysis

 Time Complexity:
 The message maybe transferred over the

fast communication links of the longest path
instead of the shortest paths with slow links.

  Time Complexity = O(n)
 n: The number of vertices in the graph.

12

Breadth First Search (BFS)

 Graph Traversal: Visiting all vertices of a graph
in some predefined order.

 It maybe required to find the shortest distances
of vertices from a source vertex in terms of the
number of links (hops) to that source.

  Approach: Breadth-First-Search (BFS) tree.

13

Breadth First Search (BFS)

A

H

B

F

E

D

C

G

Walk-Through
Enqueued
Array

A

B

C

D

E

F

G

H

How is this accomplished? Simply replace the stack
with a queue! Rules: (1) Maintain an enqueued
array. (2) Visit node when dequeued.

Q 

A

H

B

F

E

D

C

G

Walk-Through Enqueued
Array

A

B

C

D √

E

F

G

H

Enqueue D. Notice, D not yet visited.

Q  D

Nodes visited:

A

H

B

F

E

D

C

G

Walk-Through
Enqueued
Array

A

B

C √

D √

E √

F √

G

H

Dequeue D. Visit D. Enqueue unenqueued nodes
adjacent to D.

Q  C  E  F

Nodes visited: D

A

H

B

F

E

D

C

G

Walk-Through
Enqueued
Array

A

B

C √

D √

E √

F √

G

H

Dequeue C. Visit C. Enqueue unenqueued nodes
adjacent to C.

Q  E  F

Nodes visited: D, C

A

H

B

F

E

D

C

G

Walk-Through
Enqueued
Array

A

B

C √

D √

E √

F √

G

H

Dequeue E. Visit E. Enqueue unenqueued nodes
adjacent to E.

Q  F  G

Nodes visited: D, C, E

A

H

B

F

E

D

C

G

Walk-Through Enqueued
Array

A

B

C √

D √

E √

F √

G √

H

Dequeue F. Visit F. Enqueue unenqueued nodes
adjacent to F.

Q  G

Nodes visited: D, C, E, F

A

H

B

F

E

D

C

G

Walk-Through
Enqueued
Array

A

B

C √

D √

E √

F √

G √

H √

Dequeue G. Visit G. Enqueue unenqueued nodes
adjacent to G.

Q  H

Nodes visited: D, C, E, F, G

A

H

B

F

E

D

C

G

Walk-Through
Enqueued
Array

A √

B √

C √

D √

E √

F √

G √

H √

Dequeue H. Visit H. Enqueue unenqueued nodes
adjacent to H.

Q  A  B

Nodes visited: D, C, E, F, G, H

A

H

B

F

E

D

C

G

Walk-Through Enqueued
Array

A √

B √

C √

D √

E √

F √

G √

H √

Dequeue A. Visit A. Enqueue unenqueued nodes
adjacent to A.

Q  B

Nodes visited: D, C, E, F, G, H,
A

A

H

B

F

E

D

C

G

Walk-Through
Enqueued
Array

A √

B √

C √

D √

E √

F √

G √

H √

Dequeue B. Visit B. Enqueue unenqueued nodes
adjacent to B.

Q empty

Nodes visited: D, C, E, F, G, H,
A, B

A

H

B

F

E

D

C

G

Walk-Through Enqueued
Array

A √

B √

C √

D √

E √

F √

G √

H √

Q empty. Algorithm done.

Q empty

Nodes visited: D, C, E, F, G, H,
A, B

25

Depth First Search (DFS)

 Objective: Find all of the vertices reachable
from a source vertex in the graph.

 It visits all possible vertices as far as it can reach
and when all vertices are visited, it returns to the
parent node.

 Applications:
 Finding strongly connected components of a

directed graph.
 Cycles detection !!
 ….

26

Depth First Search (DFS)

A

H

B

F

E

D

C

G

Walk-Through

Visited
Array

A

B

C

D

E

F

G

H

Task: Conduct a depth-first search of the
graph starting with node D

A

H

B

F

E

D

C

G

Walk-Through
Visited
Array

A

B

C

D √

E

F

G

H

Visit D

D
The order nodes are visited:

 D

A

H

B

F

E

D

C

G

Walk-Through
Visited
Array

A

B

C

D √

E

F

G

H

Consider nodes adjacent to D,
decide to visit C first (Rule:

visit adjacent nodes in
alphabetical order)

D
The order nodes are visited:

 D

A

H

B

F

E

D

C

G

Walk-Through
Visited
Array

A

B

C √

D √

E

F

G

H

Visit C

C

D
The order nodes are visited:

 D, C

A

H

B

F

E

D

C

G

Walk-Through Visited
Array

A

B

C √

D √

E

F

G

H

No nodes adjacent to C; cannot
continue  backtrack, i.e.,

pop stack and restore
previous state

C

D
The order nodes are visited:

 D, C

A

H

B

F

E

D

C

G

Walk-Through Visited
Array

A

B

C √

D √

E

F

G

H

Back to D – C has been visited,
decide to visit E next

D
The order nodes are visited:

 D, C

A

H

B

F

E

D

C

G

Walk-Through Visited
Array

A

B

C √

D √

E √

F

G

H

Back to D – C has been visited,
decide to visit E next

E

D
The order nodes are visited:

 D, C, E

A

H

B

F

E

D

C

G

Walk-Through
Visited
Array

A

B

C √

D √

E √

F

G

H

Only G is adjacent to E

E

D
The order nodes are visited:

 D, C, E

A

H

B

F

E

D

C

G

Walk-Through Visited
Array

A

B

C √

D √

E √

F

G √

H

Visit G

G

E

D
The order nodes are visited:

 D, C, E, G

A

H

B

F

E

D

C

G

Walk-Through
Visited
Array

A

B

C √

D √

E √

F

G √

H

Nodes D and H are adjacent to
G. D has already been

visited. Decide to visit H.

G

E

D
The order nodes are visited:

 D, C, E, G

A

H

B

F

E

D

C

G

Walk-Through Visited
Array

A

B

C √

D √

E √

F

G √

H √

Visit H

H

G

E

D
The order nodes are visited:

 D, C, E, G, H

A

H

B

F

E

D

C

G

Walk-Through
Visited
Array

A

B

C √

D √

E √

F

G √

H √

Nodes A and B are adjacent to
F. Decide to visit A next.

H

G

E

D
The order nodes are visited:

 D, C, E, G, H

A

H

B

F

E

D

C

G

Walk-Through
Visited
Array

A √

B

C √

D √

E √

F

G √

H √

Visit A

A

H

G

E

D
The order nodes are visited:

 D, C, E, G, H, A

A

H

B

F

E

D

C

G

Walk-Through
Visited
Array

A √

B

C √

D √

E √

F

G √

H √

Only Node B is adjacent to A.
Decide to visit B next.

A

H

G

E

D
The order nodes are visited:

 D, C, E, G, H, A

A

H

B

F

E

D

C

G

Walk-Through
Visited
Array

A √

B √

C √

D √

E √

F

G √

H √

Visit B

B

A

H

G

E

D
The order nodes are visited:

 D, C, E, G, H, A, B

A

H

B

F

E

D

C

G

Walk-Through
Visited
Array

A √

B √

C √

D √

E √

F

G √

H √

No unvisited nodes adjacent to
B. Backtrack (pop the stack).

A

H

G

E

D
The order nodes are visited:

 D, C, E, G, H, A, B

A

H

B

F

E

D

C

G

Walk-Through
Visited
Array

A √

B √

C √

D √

E √

F

G √

H √

No unvisited nodes adjacent to
A. Backtrack (pop the stack).

H

G

E

D
The order nodes are visited:

 D, C, E, G, H, A, B

A

H

B

F

E

D

C

G

Walk-Through Visited
Array

A √

B √

C √

D √

E √

F

G √

H √

No unvisited nodes adjacent to
H. Backtrack (pop the

stack).

G

E

D
The order nodes are visited:

 D, C, E, G, H, A, B

A

H

B

F

E

D

C

G

Walk-Through Visited
Array

A √

B √

C √

D √

E √

F

G √

H √

No unvisited nodes adjacent to
G. Backtrack (pop the

stack).

E

D
The order nodes are visited:

 D, C, E, G, H, A, B

A

H

B

F

E

D

C

G

Walk-Through
Visited
Array

A √

B √

C √

D √

E √

F

G √

H √

No unvisited nodes adjacent to
E. Backtrack (pop the stack).

D
The order nodes are visited:

 D, C, E, G, H, A, B

A

H

B

F

E

D

C

G

Walk-Through Visited
Array

A √

B √

C √

D √

E √

F

G √

H √

F is unvisited and is adjacent to
D. Decide to visit F next.

D
The order nodes are visited:

 D, C, E, G, H, A, B

A

H

B

F

E

D

C

G

Walk-Through Visited
Array

A √

B √

C √

D √

E √

F √

G √

H √

Visit F

F

D
The order nodes are visited:

 D, C, E, G, H, A, B, F

A

H

B

F

E

D

C

G

Walk-Through
Visited
Array

A √

B √

C √

D √

E √

F √

G √

H √

No unvisited nodes adjacent to
F. Backtrack.

D
The order nodes are visited:

 D, C, E, G, H, A, B, F

A

H

B

F

E

D

C

G

Walk-Through
Visited
Array

A √

B √

C √

D √

E √

F √

G √

H √

No unvisited nodes adjacent to
D. Backtrack.

The order nodes are visited:

 D, C, E, G, H, A, B, F

A

H

B

F

E

D

C

G

Walk-Through Visited
Array

A √

B √

C √

D √

E √

F √

G √

H √

Stack is empty. Depth-first
traversal is done.

The order nodes are visited:

 D, C, E, G, H, A, B, F

52

Distributed Breadth-First-Search Algorithms

 Synchronous BFS: Synchronous algorithm
working in rounds to construct the BFS tree.

 Asynchronous BFS Construction: Asynchronous
algorithm to construct the BFS tree.

53

Synchronous BFS Construction Algorithm
(Synch_BFS)

 The synchronous distributed version of Dijkstra’s
algorithm for single-source shortest path
problem.

 A single initiator algorithm.

 In each synchronous round, a partial BFS tree is
formed.

 The already formed branches of the tree are
used to carry synchronization messages and the
leaves search for new nodes to be added to the
tree.

 The depth of the tree is incremented in each
round until all the nodes are covered.

54

Synch_BFS Algorithm Features

 Full termination detection is provided so that all
other nodes know when the BFS is constructed.

 Synchronization is performed using special
control messages

  Eliminates the need of other synchronization
techniques such as specific synchronizer node.

55

Synch_BFS Algorithm Message Types
 Round: Sent by the root at the beginning of each

round and transferred by all the nodes of the
partial BFS tree to their children.

 Probe: Sent by the leaves of the partial BFS tree
to the unsearched neighbors (that have not yet
been members of the tree).

 Ack/Reject: Sent by the searched node to
accept/reject being a child of the sending leaf
node.

 Upcast: Sent first by the leaf nodes of the partial
BFS tree and then by the intermediate nodes to
their parents to signal the end of neighbor search
and the end of the round.

 Finish: Sent by the leaf nodes to their parents to
signal that their part is done as they either have
no neighbors other than the parent or they do
not have any children.

 Terminate: Broadcasted by the root to all nodes
to signal that the construction of the BFS tree is
completed.

56

Synch_BFS Algorithm Flow
The root starts the algorithm by sending the first
round message to its neighbors.

The neighbors respond with ack message.

 The round message is transferred over the
partial BFS tree to the leaf nodes.

 The leaf nodes search nodes for the next level
the BFS tree by sending probe messages.

 Each leaf node that has received ack or reject
message from all of its neighbors except the parent
returns upcast message to its parent, which
convergecasts the upcast message to its parent.

 When all upcast messages from the neighbors of
the root are received, root starts the next round by
issuing the next round message.

57

Synch_BFS Algorithm Flow- Example

58

Synch_BFS Algorithm Termination
 The root does not know beforehand the diameter

of the graph.

 When all the neighbors of a node i except its
parent have responded by a reject message or
when a leaf node (in the constructed BFS tree)
does not have any neighbors other than its
parent, the part of node i is over.

 When a node reaches this situation, it sends a
finish message to its parent which converecasts
it to the root.

 When the root receives finish message from all of
its children, it broadcasts a terminate message
over the network to inform every node that the
process is over.

59

60

61

62

Synch_BFS Algorithm Complexity Analysis
 Lemma: Synch_BFS algorithm correctly

constructs a BFS tree.

 Proof: By mathematical induction, let k
denote the step at which the BFS tree is being
constructed.

(1) At step k=0, no tree is constructed.

(2) Assume that at step k, Tk tree rooted at r is
constructed.

(3) at step k+1, only the leaves of the tree will be
active in sending the probe messages to their
neighbors that are one hop away.

 Any added nodes will be k+1 hops away from r,
forming T`k

63

Synch_BFS Algorithm Complexity Analysis
 Time Complexity:

 Broadcasting the round message to current Tk
BFS tree (whose depth is k) is performed in k
units.

 Convergecast of the upcast messages is
performed in k units as well.

 Additional time is required for probe and
ack/reject messages.

  For each step, 2k+2 time is required.
 The depth of the tree will be d in total (d
represents the diameter of the graph).

 Time Complexity=

O(d2)
 d: The diameter of the graph.

64

Synch_BFS Algorithm Complexity Analysis
 Message Complexity:

 In round p, if the tree formed has k nodes,
there will be k-1 round messages and k-1
upcast messages.

  Total number of synchronization messages
for a round is O(n), n: the number of
vertices in the graph.

  The number of synchronization messages in
all rounds will be O(nd)

 In each round, new edges of the BFS tree will
be determined by probe and ack/reject
messages.

  The total number of discovery
messages=2m

m: The number of edges in the graph.

 Message Complexity=

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

