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Introduction

 Spanning Tree: The maximal set of edges of a 
graph that contains no cycles.

 The minimal set of edges that connect all 
vertices.

 Why spanning trees in computer networks?
 They provide a subtree with possibly less 

communication links, resulting in lowered 
communication costs.

 Providing a parent/child relationship among the 
nodes of the network eases the task of 
communication  since the source and the 
destination of the communication is known 
beforehand.
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The Flooding Algorithm

 Broadcast: Sending a message to all nodes in a 
computer network.

 Flooding: Forward any incoming message to all 
neighbors except the neighbor that has sent the 
message.

 If the same message arrives again, it should be 
discarded.

 The node that initiates the message to be 
broadcasted is called the root. 
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The Flooding Algorithm (2)
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The Flooding Algorithm : Complexity Analysis

 Message Complexity:
 Each edge connects two nodes.
 Each edge is used to deliver a message at 

least once and at most twice when two nodes 
send messages concurrently.

 Total number of messages =2m where m 
represents the number of edges in the graph.

  Message complexity:  O(2m)=O(m)

 Time Complexity:
 The longest time for the broadcast message 

to reach any node in the graph is the 
distance between the two farthest nodes of 
the graph.

  Time complexity: d: The diameter of the 
graph.
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Flooding-Based Asynchronous Spanning Tree 
Construction Algorithm (Flood_ST)

 Objective: Build spanning tree originating from 
the initiator root for broadcasting. This tree can 
be used for any further broadcast messages.

 Assumption: Each node in the tree except the 
leaf nodes should know the identifiers of its 
children and all nodes except the root should 
know their parents.

 Any node that wants to build a broadcast tree 
initiates the algorithm and becomes the root of 
the spanning tree to be formed. 
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Flood_ST

 Types of messages:
 Probe.
 Ack.
 Reject

 Any node that wants to build a spanning tree 
starts the algorithm by sending probe message 
to its neighbors.

 When a node receives a probe message:
  it sends a positive acknowledgement to the 

source node (which becomes a parent) in 
case it doesn’t have a parent. 

 It transfers the probe message to all of its 
neighbors except the parent.

 If a node has a parent, it sends a reject 
message to source node of the probe 
message.
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Flood_ST Algorithm
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Flood_ST- Example

Message complexity= 2m+2=20
Time complexity=3

 Shortest path is not always followed due to 
communication link speeds.
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Flood_ST: Complexity Analysis

 Message Complexity:
 Each edge will be traversed at least twice 

with probe and ack or probe and reject 
messages.

 Each edge will be traversed at most 4 times 
in the case of two nodes attempting to send 
each other probe message concurrently.

 In total 4m messages will be sent.

 Message complexity = O(4m)=O(m)
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Flood_ST: Complexity Analysis

 Time Complexity:
 The message maybe transferred over the 

fast communication links of the longest path 
instead of the shortest paths with slow links.

  Time Complexity = O(n)
   n: The number of vertices in the graph.
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Breadth First Search (BFS)

 Graph Traversal: Visiting all vertices of a graph 
in some predefined order.

 It maybe required to find the shortest distances 
of vertices from a source vertex in terms of the 
number of links (hops) to that source.

  Approach: Breadth-First-Search (BFS) tree.
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Breadth First Search (BFS)
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How is this accomplished?  Simply replace the stack 
with a queue!  Rules: (1) Maintain an enqueued 
array. (2) Visit node when dequeued.

Q  
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Enqueue D.  Notice, D not yet visited.

Q  D

Nodes visited: 
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Dequeue D.  Visit D.  Enqueue unenqueued nodes 
adjacent to D.

Q  C  E  F

Nodes visited: D 
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Dequeue C.  Visit C.  Enqueue unenqueued nodes 
adjacent to C.

Q  E  F

Nodes visited: D, C 
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Dequeue E.  Visit E.  Enqueue unenqueued nodes 
adjacent to E.

Q  F  G

Nodes visited: D, C, E 
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Dequeue F.  Visit F.  Enqueue unenqueued nodes 
adjacent to F.

Q  G

Nodes visited: D, C, E, F 
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Dequeue G.  Visit G.  Enqueue unenqueued nodes 
adjacent to G.

Q  H

Nodes visited: D, C, E, F, G 
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Dequeue H.  Visit H.  Enqueue unenqueued nodes 
adjacent to H.

Q  A  B

Nodes visited: D, C, E, F, G, H 
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Dequeue A.  Visit A.  Enqueue unenqueued nodes 
adjacent to A.

Q  B

Nodes visited: D, C, E, F, G, H, 
A 
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Dequeue B.  Visit B.  Enqueue unenqueued nodes 
adjacent to B.

Q empty 

Nodes visited: D, C, E, F, G, H, 
A, B 
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Q empty. Algorithm done.

Q empty 

Nodes visited: D, C, E, F, G, H, 
A, B 
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Depth First Search (DFS) 

 Objective: Find all of the vertices reachable 
from a source vertex in the graph.

 It visits all possible vertices as far as it can reach 
and when all vertices are visited, it returns to the 
parent node.

 Applications:
 Finding strongly connected components of a 

directed graph.
 Cycles detection !!
 ….
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Depth First Search (DFS) 
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Task: Conduct a depth-first search of the 
graph starting with node D
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D
The order nodes are visited: 

   D 
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Consider nodes adjacent to D, 
decide to visit C first (Rule: 

visit adjacent nodes in 
alphabetical order)

D
The order nodes are visited: 

   D 
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The order nodes are visited: 
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No nodes adjacent to C; cannot 
continue  backtrack, i.e., 

pop stack and restore 
previous state

C

D
The order nodes are visited: 
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Back to D – C has been visited, 
decide to visit E next

D
The order nodes are visited: 

   D, C 
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Back to D – C has been visited, 
decide to visit E next
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The order nodes are visited: 
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Only G is adjacent to E

E

D
The order nodes are visited: 

   D, C, E 
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Nodes D and H are adjacent to 
G.  D has already been 

visited.  Decide to visit H.
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The order nodes are visited: 

   D, C, E, G
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Nodes A and B are adjacent to 
F.  Decide to visit A next.
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Only Node B is adjacent to A.  
Decide to visit B next.

A

H

G

E

D
The order nodes are visited: 
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No unvisited nodes adjacent to 
B.  Backtrack (pop the stack).

A

H

G

E

D
The order nodes are visited: 
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The order nodes are visited: 
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   D, C, E, G, H, A, B



A

H

B

F

E

D

C

G

Walk-Through Visited 
Array

A √

B √

C √

D √

E √

F

G √

H √

No unvisited nodes adjacent to 
G.  Backtrack (pop the 

stack).

E

D
The order nodes are visited: 
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E.  Backtrack (pop the stack).
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The order nodes are visited: 

   D, C, E, G, H, A, B
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F is unvisited and is adjacent to 
D. Decide to visit F next.
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The order nodes are visited: 
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Stack is empty.  Depth-first 
traversal is done.

The order nodes are visited: 

   D, C, E, G, H, A, B, F
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Distributed Breadth-First-Search Algorithms

 Synchronous BFS: Synchronous algorithm 
working in rounds to construct the BFS tree.

 Asynchronous BFS Construction: Asynchronous 
algorithm to construct the BFS tree.
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Synchronous BFS Construction Algorithm 
(Synch_BFS)

 The synchronous distributed version of Dijkstra’s 
algorithm for single-source shortest path 
problem.

 A single initiator algorithm.

 In each synchronous round, a partial BFS tree is 
formed.

 The already formed branches of the tree are 
used to carry synchronization messages and the 
leaves search for new nodes to be added to the 
tree.

 The depth of the tree is incremented in each 
round until all the nodes are covered. 
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Synch_BFS Algorithm Features

 Full termination detection is provided so that all 
other nodes know when the BFS is constructed.

 Synchronization is performed using special 
control messages

   Eliminates the need of other synchronization   
techniques such as specific synchronizer node.
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Synch_BFS Algorithm Message Types
 Round: Sent by the root at the beginning of each 

round and transferred by all the nodes of the 
partial BFS tree to their children.

 Probe: Sent by the leaves of the partial BFS tree 
to the unsearched neighbors (that have not yet 
been members of the tree).

 Ack/Reject: Sent by the searched node to 
accept/reject being a child of the sending leaf 
node.

 Upcast: Sent first by the leaf nodes of the partial 
BFS tree and then by the intermediate nodes to 
their parents to signal the end of neighbor search 
and the end of the round.

 Finish: Sent by the leaf nodes to their parents to 
signal that their part is done as they either have 
no neighbors other than the parent or they do 
not have any children.

 Terminate: Broadcasted by the root to all nodes 
to signal that the construction of the BFS tree is 
completed.
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Synch_BFS Algorithm Flow
The root starts the algorithm by sending the first 
round message to its neighbors.

The neighbors respond with ack message.

 The round message is transferred over the 
partial BFS tree to the leaf nodes.

 The leaf nodes search nodes for the next level 
the BFS tree by sending probe messages.

 Each leaf node that has received ack or reject 
message from all of its neighbors except the parent 
returns upcast message to its parent, which 
convergecasts the upcast message to its parent.

 When all upcast messages from the neighbors of 
the root are received, root starts the next round by 
issuing the next round message.
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Synch_BFS Algorithm Flow- Example
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Synch_BFS Algorithm Termination
 The root does not know beforehand the diameter 

of the graph.

 When all the neighbors of a node i except its 
parent have responded by a reject message or 
when a leaf node ( in the constructed BFS tree) 
does not have any neighbors other than its 
parent, the part of node i is over.

 When a node reaches this situation, it sends a 
finish message to its parent which converecasts 
it to the root.

 When the root receives finish message from all of 
its children, it broadcasts a terminate message 
over the network to inform every node that the 
process is over.
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Synch_BFS Algorithm Complexity Analysis
 Lemma: Synch_BFS algorithm correctly 

constructs a BFS tree.

  Proof:  By mathematical induction, let k 
denote the step at which the BFS tree is being 
constructed.

(1) At step k=0, no tree is constructed.

(2) Assume that at step k, Tk tree rooted at r is 
constructed.

(3) at step k+1, only the leaves of the tree will be 
active in sending the probe messages to their 
neighbors that are one hop away. 

 Any added nodes will be k+1 hops away from r, 
forming T`k 



63

Synch_BFS Algorithm Complexity Analysis
 Time Complexity:

 Broadcasting the round message to current Tk  
BFS tree (whose depth is k) is performed in k 
units.

 Convergecast of the upcast messages is 
performed in k units as well.

 Additional time is required for probe and 
ack/reject messages.

  For each step, 2k+2 time is required.
 The depth of the tree will be d in total (d 
represents the diameter of the graph).

 Time Complexity=

O(d2)
  d: The diameter of the graph.
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Synch_BFS Algorithm Complexity Analysis
 Message Complexity:

 In round p, if the tree formed has k nodes, 
there will be k-1 round messages and k-1 
upcast messages.

  Total number of synchronization messages 
for a round is O(n), n: the number of 
vertices in the graph.

  The number of synchronization messages in 
all rounds will be O(nd)

 In each round, new edges of the BFS tree will 
be determined by probe and ack/reject 
messages.

  The total number of discovery 
messages=2m

m: The number of edges in the graph.

 Message Complexity=
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