
Distributed Algorithms for Computer
Networks

 Chapter 4

 Computational Model

Dr. Amjad Hawash

 Dr.Ahmed Awad

2

Computational Model Basics

 Aims to model the application software,
middleware, and the network to deliver
messages between different nodes of a
distributed system.

 A distributed model is typically modeled as a
graph whose vertices represent the computation
nodes and the edges represent the links between
them.

 A distributed algorithm runs at each node of the
network graph and cooperates with other nodes
to accomplish a common task.

3

Simple Routing Algorithm
 Nodes only know their neighbors

 When a node receives a message

  Simply forward this message to all of its
neighbors except the one it has received the
message from.

  If the destination is one of its neighbors, it
sends the message directly for it.

4

Simple Routing Algorithm (2)

5

Simple Routing Algorithm (3)

 Drawback of the algorithm:

 A node may send/receive the message more
than once.

 The network will be flooded with duplicate
messages.

6

Simple Routing Algorithm (4)

 Solution:

 Sequence number.

 Each node can check whether it has seen the

seq value from some node before. If yes, it
will be discarded.

7

Message Passing

8

Distributed Algorithm Code Segment

 Receiving a message.

 Based on the type of the message perform a
specific action.

 The algorithm runs until some condition is met,
for example:

  A specific message is received.

  Some Boolean variable becomes true.

9

Distributed Algorithm Structure

 Algorithm running at node i:

10

Steps of Message Delivery

11

Steps of Message Delivery

12

Delivering a Sequence of Messages

 First-In-First-Out (FIFO) Delivery
 Deliver the messages in sequence to the

required node.

 Non-First-In-First-Out (Non-FIFO) Delivery
 Deliver the messages in random order.

 Buffered Communication
 Using buffers between the application,

operating system, and the network protocol.

 Unbuffered Communication
 The message is written/received directly

to/from the network.

13

Finite State Machine (FSM)

 Mathematical model to design systems whose
output depends on the history of their inputs
and their current states.

 Has a number of states, and it can be only in one
state at a time.

 Upon triggering an event, a FSM can change its
current state.

 Represented as:

 Directed graph.
 State table.

14

Finite State Machine (FSM)

 Types of FSM:

 Moore Machine: The output is the new
decided state.

 Mealy Machine: Provides an output and a
new state as a result of being triggered by
some action.

15

Moore Machine Example: Parity Check

 Takes a binary string as input.
 If the number of 1s is even, it will be in EVEN

state.
 Otherwise, it will be in ODD state.

State Diagram

State
Table

16

Mealy Machine Example: Data Link Protocol
Design

 Stop and Wait Automatic Repeat Request (ARQ) :
 Data link layer protocol.
 Error control
 Wait for acknowledgement from the receiver

before sending the next frame.
 A single frame in transmission at a time.
 Duplicate packets are avoided using odd and

even sequence numbers.

 Receiver

Sender

17

Mealy Machine Example: Data Link Protocol
Design

18

Mealy Machine Example: Data Link Protocol
Design

19

Synchronization- Hardware Level

Hardware level: Processors execute in lock
step, and the next step of execution is not
enabled until all nodes finish their current
execution. This is called Single Instruction
Multiple Data (SIMD) which is not feasible for
distributed systems.

Multiple-Instruction-Multiple Data (MIMD):
Do not reply on hardware synchronization and
nodes work autonomously (More realistic in
distributed computing systems).

20

Synchronization- Network Protocol Level

A typical network protocol at some layer at the
sender side communicates with the same layer
of the destination node by applying error
checking codes, receiving ackonwledgements,
and retransmissions.

21

Communication Primitives

Blocking send: The sending process is
blocked by the operating system until an
acknowledgement from the destination is
received to confirm its reception. In this case,
the process is unblocked.

Blocking receive: The receiving process is
blocked by the operating system if there are no
messages available to it.

Blocking send

22

Communication Primitives (2)

Non-blocking send: The sending process
continues processing after sending the
message.

Non-blocking receive: The receiving process
checks if it has any pending messages, and if
there is a message, it receives it. In any case,
it continues processing.

Non-blocking send

23

Mailboxes

Mailbox: A depository place for messages
which is used for indirect inter-process
communications. It is mainly used for non-
blocking receive.

Mailbox is protected by a semaphore data
structure which consists of an integer and a
process queue.

 Two operations:
 Wait
 Signal

24

Mailboxes

25

Application Level Synchronization
- Known as global synchronization.

- Does not have any support from the OS or the hardware.

- Used in many applications.

- Achieved by the use of special protocol messages.

- Lock-step fashion in rounds as follows:
- Start round.
- Send messages.
- Receive messages.
- Perform computation.

 The next round can be only started after all
messages from previous nodes are delivered and all
computations have been performed.

26

Application Level Synchronization (2)
- Root: Central node that initiates a round, and

gathers special message in an accumulated
manner from all nodes, to start then a new
round.

- Single-Initiator Algorithm: The distributed
algorithm is started by a single designated
process (initiator).

- Concurrent-Initiator Algorithm: The
distributed algorithm is started by concurrent
initiators.

- Execution Modes of Distributed Algorithm:

27

Execution Modes of Distributed Algorithms
- Synchronous Single-Initiator (SSI): Synchronous

distributed algorithm started by a single initiator.
- Easy to analyze.
- Requires synchronization operation either at hardware level,

middleware, or by the additional of special protocol control
messages.

- Asynchronous Single-Initiator (ASI): Asynchronous
distributed algorithm started by a single initiator.

- Does not need any synchronization.
- Termination conditions should be carefully designed.

- Synchronous Concurrent-Initiator (SCI): An
algorithm that is executed synchronously under the
control of concurrent initiators.

- May require hardware support.
- Asynchronous Concurrent-Initiator (ACI): The most

versatile type of algorithms.
- Synchronization at certain points during execution may be

complicated.

28

Performance Metrics of Distributed Algorithms
- Time Complexity.

- Bit Complexity.

- Space Complexity.

- Message Complexity

29

Time Complexity
- For sequential algorithm: The number of

steps needed for the algorithm to finish.

- For synchronous distributed algorithm: The
number of rounds required for the algorithm to
finish in the worst case.

- For asynchronous distributed algorithm:
The number of steps needed for the algorithm to
finish in its worst case.

30

Bit Complexity
- The maximal length of a message communicated

in the distributed system.

- The problem is when the message is large or is
enlarged as traverses the network.

- For example, some applications require that a
special message includes the node identifier for
each node it traverses.

  Bit complexity O(nlogn)

31

Space Complexity

- The maximum storage in bits required by the
algorithm for local storage at a node.

- Important if a node holds large tables as in the
case of routing algorithms.

32

Message Complexity

- The number of messages exchanged in the
communication for the distributed application.

- This cost is dominant because the time spent in
message transmissions is order of magnitude
higher than the time spent for local
computations.

- Calculated by measuring the number of
messages traverse the edges of the graph.

33

Example: SSI Algorithm

 What is the message complexity????

	Distributed Algorithms for Computer Networks
	Computational Model Basics
	Simple Routing Algorithm
	Simple Routing Algorithm (2)
	Simple Routing Algorithm (3)
	Simple Routing Algorithm (4)
	Message Passing
	Distributed Algorithm Code Segment
	Distributed Algorithm Structure
	Steps of Message Delivery
	Slide 11
	Delivering a Sequence of Messages
	Finite State Machine (FSM)
	Slide 14
	Moore Machine Example: Parity Check
	Mealy Machine Example: Data Link Protocol Design
	Slide 17
	Slide 18
	Synchronization- Hardware Level
	Synchronization- Network Protocol Level
	Communication Primitives
	Communication Primitives (2)
	Mailboxes
	Slide 24
	Application Level Synchronization
	Application Level Synchronization (2)
	Execution Modes of Distributed Algorithms
	Performance Metrics of Distributed Algorithms
	Time Complexity
	Bit Complexity
	Space Complexity
	Message Complexity
	Example: SSI Algorithm

