

Object-Based Systems Programming
Chapter 30: Multithreading and Parallel

Programming
Dr. Amjad Hawash

30.1 Introduction

 Multithreading enables multiple tasks in a program to be
executed concurrently.

 In many programming languages, you have to invoke
system-dependent procedures and functions to implement
multithreading.

30.2 Thread Concepts

 A program may consist of many tasks that can run
concurrently.

 A thread is the flow of execution, from beginning to end, of
a task.

 With Java, you can launch multiple threads from a
program concurrently.

 These threads can be executed simultaneously in
multiprocessor systems.

30.2 Thread Concepts

 In single-processor systems, the multiple threads share
CPU time, known as time sharing, and the operating
system is responsible for scheduling and allocating
resources to them.

 This arrangement is practical because most of the time the
CPU is idle.

 It does nothing, for example, while waiting for the user to
enter data.

30.2 Thread Concepts

 Multithreading can make your program more responsive
and interactive, as well as enhance performance.

 For example, a good word processor lets you print or save
a file while you are typing.

 In some cases, multithreaded programs run faster than
single-threaded programs even on single-processor
systems.

30.2 Thread Concepts

 In Java, each task is an instance of the Runnable
interface, also called a runnable object.

 A thread is essentially an object that facilitates the
execution of a task.

30.3 Creating Tasks and Threads

 A task class must implement the Runnable interface.
 Tasks are objects.
 To create tasks, you have to first define a class for tasks,

which implements the Runnable interface.

30.3 Creating Tasks and Threads

30.3 Creating Tasks and Threads

 A task must be executed in a thread.
 The Thread class contains the constructors for creating

threads and many useful methods for controlling threads.
 The JVM will execute the task by invoking the task’s run()

method.

30.3 Creating Tasks and Threads

 When you run this program, the three threads will share
the CPU and take turns printing letters and numbers on
the console.

30.3 Creating Tasks and Threads

30.3 Creating Tasks and Threads

 When the run() method completes, the thread terminates.
 Because the first two tasks, printA and printB, have similar

functionality, they can be defined in one task class
PrintChar (lines 21–41).

30.4 The Thread Class

 The Thread class contains the constructors for creating
threads for tasks and the methods for controlling threads.

30.4 The Thread Class

30.4 The Thread Class

 You can use the yield() method to temporarily release time
for other threads.

 For example, suppose you modify the code in the run()
method in lines 53–57 for PrintNum in Listing 30.1 as
follows:

30.4 The Thread Class

 Every time a number is printed, the thread of the print100
task is yielded to other threads.

 The sleep(long millis) method puts the thread to sleep for a
specified time in milliseconds to allow other threads to
execute.

 For example, suppose you modify the code in lines 53–57
in Listing 30.1, as follows:

30.4 The Thread Class

 Every time a number (>= 50) is printed, the thread of the
print100 task is put to sleep for 1 millisecond.

 The sleep method may throw an InterruptedException,
which is a checked exception.

 Such an exception may occur when a sleeping thread’s
interrupt() method is called.

30.4 The Thread Class

 If a sleep method is invoked in a loop, you should wrap the
loop in a try-catch block, as shown in (a) below.

 If the loop is outside the try-catch block, as shown in (b),
the thread may continue to execute even though it is being
interrupted.

30.4 The Thread Class

 You can use the join() method to force one thread to wait
for another thread to finish.

 For example, suppose you modify the code in lines 53–57
in Listing 30.1 as follows:

30.4 The Thread Class

 The numbers from 50 to 100 are printed after thread
thread4 is finished.

 Java assigns every thread a priority.
 You can increase or decrease the priority of any thread by

using the setPriority method, and you can get the thread’s
priority by using the getPriority method.

 Priorities are numbers ranging from 1 to 10.
 The Thread class has the int constants MIN_PRIORITY,

NORM_PRIORITY, and MAX_PRIORITY, representing 1,
5, and 10, respectively.

 The priority of the main thread is
Thread.NORM_PRIORITY.

30.4 The Thread Class

 The JVM always picks the currently runnable thread with the
highest priority.

 A lowerpriority thread can run only when no higher-priority
threads are running.

 If all runnable threads have equal priorities, each is
assigned an equal portion of the CPU time in a circular
queue.

 This is called round-robin scheduling.
 For example, suppose you insert the following code in line

16 in Listing 30.1:

 thread3.setPriority(Thread.MAX_PRIORITY);
 The thread for the print100 task will be finished first.

30.6 Thread Pools

 A thread pool can be used to execute tasks efficiently.
 In Section 30.3, Creating Tasks and Threads, you learned

how to define a task class by implementing
java.lang.Runnable, and how to create a thread to run a
task like this:

 Runnable task = new TaskClass(task);
 new Thread(task).start();

 This approach is convenient for a single task execution,
but it is not efficient for a large number of tasks because
you have to create a thread for each task.

30.6 Thread Pools

 Starting a new thread for each task could limit throughput
and cause poor performance.

 Using a thread pool is an ideal way to manage the number
of tasks executing concurrently.

 Java provides the Executor interface for executing tasks in
a thread pool and the ExecutorService interface for
managing and controlling tasks.

30.6 Thread Pools

30.6 Thread Pools

 The newFixedThreadPool(int) method creates a fixed
number of threads in a pool.

 If a thread terminates due to a failure prior to shutdown, a
new thread will be created to replace it if all the threads in
the pool are not idle and there are tasks waiting for
execution.

 The newCachedThreadPool() method creates a new
thread if all the threads in the pool are not idle and there
are tasks waiting for execution.

30.6 Thread Pools

 A thread in a cached pool will be terminated if it has not
been used for 60 seconds.

 A cached pool is efficient for many short tasks.

30.6 Thread Pools

30.6 Thread Pools

 The executor creates three threads to execute three tasks
concurrently.

 Suppose that you replace line 6 with
 ExecutorService executor = Executors.newFixedThreadPool(1);

30.6 Thread Pools

 What will happen? The three runnable tasks will be executed
sequentially because there is only one thread in the pool.

 Suppose you replace line 6 with

 ExecutorService executor = Executors.newCachedThreadPool();
 What will happen? New threads will be created for each waiting task,

so all the tasks will be executed concurrently.

 The shutdown() method in line 14 tells the executor to shut down.

 No new tasks can be accepted, but any existing tasks will continue to
finish.

30.7 Thread Synchronization

 Thread synchronization is to coordinate the execution of the
dependent threads.

 A shared resource may become corrupted if it is accessed
simultaneously by multiple threads.

 Suppose you create and launch 100 threads, each of which adds a
penny to an account.

 Define a class named Account to model the account, a class named
AddAPennyTask to add a penny to the account, and a main class that
creates and launches threads.

30.7 Thread Synchronization

30.7 Thread Synchronization

30.7 Thread Synchronization

 The isTerminated() method (line 17) is used to test
whether the thread is terminated.

 The balance of the account is initially 0 (line 32).
 When all the threads are finished, the balance should be

100 but the output is unpredictable.
 This demonstrates the data-corruption problem that occurs

when all the threads have access to the same data source
simultaneously.

30.7 Thread Synchronization

 Lines 39–49 could be replaced by one statement:

 balance = balance + amount;
 It is highly unlikely, although plausible, that the problem

can be replicated using this single statement.
 The statements in lines 39–49 are deliberately designed to

magnify the datacorruption problem and make it easy to
see.

30.7 Thread Synchronization

 If you run the program several times but still do not see the
problem, increase the sleep time in line 44.

 This will increase the chances for showing the problem of
data inconsistency.

 What, then, caused the error in this program? A possible
scenario is shown in Figure 30.11.

30.7 Thread Synchronization

 The effect of this scenario is that Task 1 does nothing
because in Step 4 Task 2 overrides Task 1’s result.

 Obviously, the problem is that Task 1 and Task 2 are
accessing a common resource in a way that causes a
conflict.

 This is a common problem, known as a race condition, in
multithreaded programs.

 A class is said to be thread-safe if an object of the class
does not cause a race condition in the presence of multiple
threads.

 As demonstrated in the preceding example, the Account
class is not thread-safe.

30.7.1 The synchronized Keyword

 To avoid race conditions, it is necessary to prevent more
than one thread from simultaneously entering a certain
part of the program, known as the critical region.

 The critical region in Listing 30.4 is the entire deposit
method.

 You can use the keyword synchronized to synchronize
the method so that only one thread can access the method
at a time.

 There are several ways to correct the problem in Listing
30.4.

30.7.1 The synchronized Keyword

 One approach is to make Account thread-safe by adding
the keyword synchronized in the deposit method in line 38,
as follows:

 public synchronized void deposit(double amount)
 A synchronized method acquires a lock before it executes.
 A lock is a mechanism for exclusive use of a resource.
 In the case of an instance method, the lock is on the object

for which the method was invoked.
 In the case of a static method, the lock is on the class.

30.7.1 The synchronized Keyword

 If one thread invokes a synchronized instance method
(respectively, static method) on an object, the lock of that
object (respectively, class) is acquired first, then the
method is executed, and finally the lock is released.

 Another thread invoking the same method of that object
(respectively, class) is blocked until the lock is released.

 With the deposit method synchronized, the preceding
scenario cannot happen.

 If Task 1 enters the method, Task 2 is blocked until Task 1
finishes the method, as shown in Figure 30.12.

30.7.1 The synchronized Keyword

30.7.2 Synchronizing Statements

 Invoking a synchronized instance method of an object
acquires a lock on the object, and invoking a synchronized
static method of a class acquires a lock on the class.

 A synchronized statement can be used to acquire a lock on
any object, not just this object, when executing a block of
the code in a method.

 This block is referred to as a synchronized block.
 The general form of a synchronized statement is as

follows:

 synchronized (expr) {
 statements;
 }

30.7.2 Synchronizing Statements

 The expression expr must evaluate to an object reference.
If the object is already locked by another thread, the thread
is blocked until the lock is released.

 When a lock is obtained on the object, the statements in
the synchronized block are executed and then the lock is
released.

 Synchronized statements enable you to synchronize part
of the code in a method instead of the entire method.

 This increases concurrency.
 You can make Listing 30.4 thread-safe by placing the

statement in line 26 inside a synchronized block:

30.7.2 Synchronizing Statements

30.8 Synchronization Using Locks

 Locks and conditions can be explicitly used to synchronize
threads.

 A synchronized instance method implicitly acquires a lock
on the instance before it executes the method.

30.8 Synchronization Using Locks

 Java enables you to acquire locks explicitly, which give
you more control for coordinating threads.

 A lock is an instance of the Lock interface, which defines
the methods for acquiring and releasing locks, as shown in
Figure 30.13.

 A lock may also use the newCondition() method to create
any number of Condition objects, which can be used for
thread communications.

30.8 Synchronization Using Locks

30.8 Synchronization Using Locks

 ReentrantLock is a concrete implementation of Lock for
creating mutually exclusive locks.

30.8 Synchronization Using Locks

30.8 Synchronization Using Locks

30.8 Synchronization Using Locks

 Listing 30.5 can be implemented using a synchronize
method for deposit rather than using a lock.

 In general, using synchronized methods or statements is
simpler than using explicit locks for mutual exclusion.

 However, using explicit locks is more intuitive and flexible
to synchronize threads with conditions, as you will see in
the next section.

30.9 Cooperation among Threads

 Conditions on locks can be used to coordinate thread
interactions.

 Thread synchronization suffices to avoid race conditions
by ensuring the mutual exclusion of multiple threads in the
critical region, but sometimes you also need a way for
threads to cooperate.

 Conditions can be used to facilitate communications
among threads.

 A thread can specify what to do under a certain condition.
 Conditions are objects created by invoking the

newCondition() method on a Lock object.

30.9 Cooperation among Threads

 Once a condition is created, you can use its await(),
signal(), and signalAll() methods for thread
communications.

 The await() method causes the current thread to wait until
the condition is signaled.

 The signal() method wakes up one waiting thread, and the
signalAll() method wakes all waiting threads.

30.9 Cooperation among Threads

 Suppose that you create and launch two tasks: one that
deposits into an account and one that withdraws from the
same account.

 The withdraw task has to wait if the amount to be
withdrawn is more than the current balance.

 Whenever new funds are deposited into the account, the
deposit task notifies the withdraw thread to resume.

 If the amount is still not enough for a withdrawal, the
withdraw thread has to continue to wait for a new deposit.

30.9 Cooperation among Threads

 To synchronize the operations, use a lock with a condition:
newDeposit (i.e., new deposit added to the account).

 If the balance is less than the amount to be withdrawn, the
withdraw task will wait for the newDeposit condition.

 When the deposit task adds money to the account, the
task signals the waiting withdraw task to try again.

30.9 Cooperation among Threads

30.9 Cooperation among Threads

 To use a condition, you have to first obtain a lock.
 The await() method causes the thread to wait and

automatically releases the lock on the condition.
 Once the condition is right, the thread reacquires the lock

and continues executing.
 Assume that the initial balance is 0 and the amount to

deposit and withdraw are randomly generated.

30.9 Cooperation among Threads

30.9 Cooperation among Threads

30.9 Cooperation among Threads

 A monitor is an object with mutual exclusion and synchronization
capabilities.

 Only one thread can execute a method at a time in the monitor.
 A thread enters the monitor by acquiring a lock on it and exits by

releasing the lock.
 Any object can be a monitor.
 An object becomes a monitor once a thread locks it.

 Locking is implemented using the synchronized keyword on a
method or a block.

 A thread must acquire a lock before executing a synchronized
method or block.

 A thread can wait in a monitor if the condition is not right for it to
continue executing in the monitor.

30.9 Cooperation among Threads

 You can invoke the wait() method on the monitor object to
release the lock so that some other thread can get in the
monitor and perhaps change the monitor’s state.

 When the condition is right, the other thread can invoke
the notify() or notifyAll() method to signal one or all waiting
threads to regain the lock and resume execution.

 The template for invoking these methods is shown in
Figure 30.17.

30.9 Cooperation among Threads

30.9 Cooperation among Threads

 The wait(), notify(), and notifyAll() methods must be called
in a synchronized method or a synchronized block on the
receiving object of these methods.

 Otherwise, an IllegalMonitorStateException will occur.
 When wait() is invoked, it pauses the thread and

simultaneously releases the lock on the object.
 When the thread is restarted after being notified, the lock

is automatically reacquired.
 The wait(), notify(), and notifyAll() methods on an object

are analogous to the await(), signal(), and signalAll()
methods on a condition.

30.10 Case Study:
Producer/Consumer

30.10 Case Study:
Producer/Consumer

30.10 Case Study:
Producer/Consumer

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

